Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of transparent heat mirrors based on metal oxide thin film structures

Identifieur interne : 004462 ( Main/Repository ); précédent : 004461; suivant : 004463

Development of transparent heat mirrors based on metal oxide thin film structures

Auteurs : RBID : Pascal:10-0167076

Descripteurs français

English descriptors

Abstract

The aim of this work is the preparation of RF sputtered indium-tin oxide (ITO) thin films for application as transparent heat mirrors. The heat mirrors are important elements for the photothermal solar energy conversion. In combination with moderate spectral selectivity of the solar absorbers they could increase the efficiency of the solar collector. The optical properties of ITO and double-layer ITO with titanium dioxide (Ti02) structures in the visible and infrared ranges were investigated. The films were deposited on glass substrates by RF sputtering technique. Tin-doped indium, as well as titanium targets was used. The influence of the In-Sn target composition and the deposition parameters on the film properties were studied. The films' surface morphology and structure were investigated by SEM, TEM and XRD, the composition was studied applying electron probe microanalyzer (EPMA). The thicknesses of the films were determined by the laser ellipsometry method. The measurements in the infrared range were performed on Fourier transform infrared spectrophotometer (FTIR). The single layer ITO structures showed reflectance in the infrared range not exceeding 50% at longer wavelengths. The double layer structures with TiO2 under layer showed increased reflectance in the infrared range with high visible transmittance reaching 85%.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0167076

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Development of transparent heat mirrors based on metal oxide thin film structures</title>
<author>
<name sortKey="Dobrikov, G H" uniqKey="Dobrikov G">G. H. Dobrikov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Technical University, 8 "Kliment Ohridski" Blvd.</s1>
<s2>1756 Sofia</s2>
<s3>BGR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<placeName>
<settlement type="city">Sofia</settlement>
<region nuts="2">Sofia-ville (oblast)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rassovska, M M" uniqKey="Rassovska M">M. M. Rassovska</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Technical University, 8 "Kliment Ohridski" Blvd.</s1>
<s2>1756 Sofia</s2>
<s3>BGR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<placeName>
<settlement type="city">Sofia</settlement>
<region nuts="2">Sofia-ville (oblast)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Andreev, N M" uniqKey="Andreev N">N. M. Andreev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Technical University, 8 "Kliment Ohridski" Blvd.</s1>
<s2>1756 Sofia</s2>
<s3>BGR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<placeName>
<settlement type="city">Sofia</settlement>
<region nuts="2">Sofia-ville (oblast)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boyadzhiev, S I" uniqKey="Boyadzhiev S">S. I. Boyadzhiev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Technical University, 8 "Kliment Ohridski" Blvd.</s1>
<s2>1756 Sofia</s2>
<s3>BGR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<placeName>
<settlement type="city">Sofia</settlement>
<region nuts="2">Sofia-ville (oblast)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gesheva, K A" uniqKey="Gesheva K">K. A. Gesheva</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 "Tzarigradsko shosse" Blvd.</s1>
<s2>1784 Sofia</s2>
<s3>BGR</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<placeName>
<settlement type="city">Sofia</settlement>
<region nuts="2">Sofia-ville (oblast)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ivanova, T M" uniqKey="Ivanova T">T. M. Ivanova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 "Tzarigradsko shosse" Blvd.</s1>
<s2>1784 Sofia</s2>
<s3>BGR</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<placeName>
<settlement type="city">Sofia</settlement>
<region nuts="2">Sofia-ville (oblast)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sharlandjiev, P S" uniqKey="Sharlandjiev P">P. S. Sharlandjiev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Central Laboratory of Optical Storage and Processing of Information, Acad. G. Bonchev str., bl. 109</s1>
<s2>1113, Sofia</s2>
<s3>BGR</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<placeName>
<settlement type="city">Sofia</settlement>
<region nuts="2">Sofia-ville (oblast)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nazarowa, D I" uniqKey="Nazarowa D">D. I. Nazarowa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Central Laboratory of Optical Storage and Processing of Information, Acad. G. Bonchev str., bl. 109</s1>
<s2>1113, Sofia</s2>
<s3>BGR</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<placeName>
<settlement type="city">Sofia</settlement>
<region nuts="2">Sofia-ville (oblast)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0167076</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0167076 INIST</idno>
<idno type="RBID">Pascal:10-0167076</idno>
<idno type="wicri:Area/Main/Corpus">004747</idno>
<idno type="wicri:Area/Main/Repository">004462</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenic additions</term>
<term>Electron microprobe analysis</term>
<term>Electron probes</term>
<term>Ellipsometry</term>
<term>Energy conversion</term>
<term>Fourier transform spectroscopy</term>
<term>Indium additions</term>
<term>Indium oxide</term>
<term>Lamellar structure</term>
<term>Metallic thin films</term>
<term>Microstructure</term>
<term>Mirrors</term>
<term>Optical properties</term>
<term>Radiofrequency sputtering</term>
<term>Reflection spectrum</term>
<term>Reflectivity</term>
<term>Scanning electron microscopy</term>
<term>Selectivity</term>
<term>Sputter deposition</term>
<term>Surface morphology</term>
<term>Surface structure</term>
<term>Thin films</term>
<term>Tin additions</term>
<term>Tin oxide</term>
<term>Titanium</term>
<term>Titanium oxide</term>
<term>Transmission electron microscopy</term>
<term>Transmittance</term>
<term>Visible spectra</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Miroir</term>
<term>Couche mince métallique</term>
<term>Couche mince</term>
<term>Microstructure</term>
<term>Dépôt pulvérisation</term>
<term>Conversion énergie</term>
<term>Sélectivité</term>
<term>Propriété optique</term>
<term>Spectre visible</term>
<term>Pulvérisation haute fréquence</term>
<term>Addition étain</term>
<term>Addition indium</term>
<term>Addition arsenic</term>
<term>Morphologie surface</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Oxyde de titane</term>
<term>Titane</term>
<term>Structure surface</term>
<term>Microscopie électronique balayage</term>
<term>Microscopie électronique transmission</term>
<term>Diffraction RX</term>
<term>Sonde électronique</term>
<term>Analyse microsonde électronique</term>
<term>Ellipsométrie</term>
<term>Spectrométrie transformée Fourier</term>
<term>Structure lamellaire</term>
<term>Facteur réflexion</term>
<term>Spectre réflexion</term>
<term>Facteur transmission</term>
<term>TiO2</term>
<term>Substrat verre</term>
<term>Ti</term>
<term>6855J</term>
<term>8115C</term>
<term>7866</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The aim of this work is the preparation of RF sputtered indium-tin oxide (ITO) thin films for application as transparent heat mirrors. The heat mirrors are important elements for the photothermal solar energy conversion. In combination with moderate spectral selectivity of the solar absorbers they could increase the efficiency of the solar collector. The optical properties of ITO and double-layer ITO with titanium dioxide (Ti0
<sub>2</sub>
) structures in the visible and infrared ranges were investigated. The films were deposited on glass substrates by RF sputtering technique. Tin-doped indium, as well as titanium targets was used. The influence of the In-Sn target composition and the deposition parameters on the film properties were studied. The films' surface morphology and structure were investigated by SEM, TEM and XRD, the composition was studied applying electron probe microanalyzer (EPMA). The thicknesses of the films were determined by the laser ellipsometry method. The measurements in the infrared range were performed on Fourier transform infrared spectrophotometer (FTIR). The single layer ITO structures showed reflectance in the infrared range not exceeding 50% at longer wavelengths. The double layer structures with TiO
<sub>2</sub>
under layer showed increased reflectance in the infrared range with high visible transmittance reaching 85%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>518</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Development of transparent heat mirrors based on metal oxide thin film structures</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Transparent Conductive Oxides: TCO2008</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DOBRIKOV (G. H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RASSOVSKA (M. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ANDREEV (N. M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BOYADZHIEV (S. I.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GESHEVA (K. A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>IVANOVA (T. M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SHARLANDJIEV (P. S.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>NAZAROWA (D. I.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>FORTUNATO (Elvira)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>LEE (Sang Yeol)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>VAYSSIERES (Lionel)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Technical University, 8 "Kliment Ohridski" Blvd.</s1>
<s2>1756 Sofia</s2>
<s3>BGR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 "Tzarigradsko shosse" Blvd.</s1>
<s2>1784 Sofia</s2>
<s3>BGR</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Central Laboratory of Optical Storage and Processing of Information, Acad. G. Bonchev str., bl. 109</s1>
<s2>1113, Sofia</s2>
<s3>BGR</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Materials Science Department/CENIMAT, Faculty of Sciences and Technology, New university of Lisbon, Campus da Caparica</s1>
<s2>2829-516 Caparica</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Center for Energy Materials Research, Korea Institute of Science and Technology</s1>
<s2>Seoul 136-791</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>1091-1094</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000189339040150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>8 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0167076</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The aim of this work is the preparation of RF sputtered indium-tin oxide (ITO) thin films for application as transparent heat mirrors. The heat mirrors are important elements for the photothermal solar energy conversion. In combination with moderate spectral selectivity of the solar absorbers they could increase the efficiency of the solar collector. The optical properties of ITO and double-layer ITO with titanium dioxide (Ti0
<sub>2</sub>
) structures in the visible and infrared ranges were investigated. The films were deposited on glass substrates by RF sputtering technique. Tin-doped indium, as well as titanium targets was used. The influence of the In-Sn target composition and the deposition parameters on the film properties were studied. The films' surface morphology and structure were investigated by SEM, TEM and XRD, the composition was studied applying electron probe microanalyzer (EPMA). The thicknesses of the films were determined by the laser ellipsometry method. The measurements in the infrared range were performed on Fourier transform infrared spectrophotometer (FTIR). The single layer ITO structures showed reflectance in the infrared range not exceeding 50% at longer wavelengths. The double layer structures with TiO
<sub>2</sub>
under layer showed increased reflectance in the infrared range with high visible transmittance reaching 85%.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60A16</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Miroir</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Mirrors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche mince métallique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Metallic thin films</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Conversion énergie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Energy conversion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Sélectivité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Selectivity</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Selectividad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Spectre visible</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Visible spectra</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Pulvérisation haute fréquence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Radiofrequency sputtering</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Pulverización alta frecuencia</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Addition arsenic</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Arsenic additions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Titane</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Titanium</s0>
<s2>NC</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Structure surface</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Surface structure</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>XRD</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Sonde électronique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Electron probes</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Analyse microsonde électronique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Electron microprobe analysis</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Ellipsométrie</s0>
<s5>35</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Ellipsometry</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Spectrométrie transformée Fourier</s0>
<s5>36</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Fourier transform spectroscopy</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Structure lamellaire</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Lamellar structure</s0>
<s5>37</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Estructura lamelar</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>38</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>39</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>39</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Facteur transmission</s0>
<s5>40</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Transmittance</s0>
<s5>40</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Factor transmisión</s0>
<s5>40</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Ti</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>109</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Symposium on Transparent Conductive Oxides (TCO2008)</s1>
<s2>2</s2>
<s3>Hersonissos, Crète GRC</s3>
<s4>2008-10-22</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004462 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004462 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0167076
   |texte=   Development of transparent heat mirrors based on metal oxide thin film structures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024